6^2+14^2=c^2

Simple and best practice solution for 6^2+14^2=c^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6^2+14^2=c^2 equation:



6^2+14^2=c^2
We move all terms to the left:
6^2+14^2-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+232=0
a = -1; b = 0; c = +232;
Δ = b2-4ac
Δ = 02-4·(-1)·232
Δ = 928
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{928}=\sqrt{16*58}=\sqrt{16}*\sqrt{58}=4\sqrt{58}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{58}}{2*-1}=\frac{0-4\sqrt{58}}{-2} =-\frac{4\sqrt{58}}{-2} =-\frac{2\sqrt{58}}{-1} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{58}}{2*-1}=\frac{0+4\sqrt{58}}{-2} =\frac{4\sqrt{58}}{-2} =\frac{2\sqrt{58}}{-1} $

See similar equations:

| a/3+9=14 | | -3(x+-3)+2x=-(x+-5)+4 | | 5b+b=-12 | | 5m+5=-75 | | 3(x+-3)+2x=-1(x+-5)+4 | | 19/7=n/10 | | (3x-1)=(2x+3) | | -32=9c+13 | | -1(x+-3)+2x=-1(x+-5)+4 | | 51=43+x10 | | (x+17)=(3x+23) | | 90+130+y=360 | | v/11+3=9 | | 7-2g=-7 | | 7−2g=–7 | | 0.6(x-4)=-5 | | 17−3f=5 | | 2y^2+3y=-9 | | 8/x+7=4/7 | | 2,5n=12 | | 12x-56=100 | | 6-2(2x^2+2)=x+17 | | -4x+5(8)=10 | | k/9.7+99.2=57.1 | | 2(2x-5=7x-16 | | -3(x+-3)+2x=-1(x+-5)+4 | | N+6=-19-4n | | 3y^2=243 | | 6x-33+2x-30=3x+60+2x+45 | | 4m-(-5)=29 | | 0.5(x+9)=-5 | | 7x^2-50=650 |

Equations solver categories